Системы исчисления: двоичная, восьмеричная, десятичная, шестнадцатеричная.
Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов (1 и 0). Компьютер может различить только нулевое и единичное состояние бита, и работает компьютер в системе исчисления с основанием 2 или в двоичной системе.
Сочетанием двоичных цифр (битов) можно представить любое значение. Значение двоичного числа определяется относительной позицией каждого бита и наличием единичных битов. Ниже показано восьмибитовое число, содержащее все единичные биты:
значения: 128 64 32 16 8 4 2 1 биты: 1 1 1 1 1 1 1 1
Самая правая цифра имеет весовое значение 1, следующая цифра влево - 2, следующая - 4 и т.д. Общая сумма для восьми единичных битов в данном случае составит 255:
(1+2+4+8+16+32+64+128=255)
Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:
512 256 128 64 32 16 8 4 2 1
Начиная с цифры 1 все цифры умножаются на два.
Допустим, нам нужно перевести число 17 в двоичное. Согласно таблице степеней оснований (см. выше) 17=16+1. Значит на место значимых цифр 16 и 1 ставим 1 - остальные нули. Получаем 17=10001
512 256 128 64 32 16 8 4 2 1 0 0 0 0 0 1 0 0 0 1
Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :
19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 с остатком 0 2 /2 = 1 с остатком 0 1 /2 = 0 с остатком 1
Итак, мы делим каждое частное на 2 и записываем остаток в начало двоичной записи. Продолжаем делить на 2 частные от деления до тех пор, пока частное не станет равным 0. В результате получаем число 19 в двоичной записи: 10011.
В обратную сторону нужно десятичные сложить, основываясь на таблице степеней основания 2.
Компьютер выполняет арифметические действия только в двоичном формате. Поэтому, необходимо знать правила сложения в двоичной системе исчисления. Напомним их:
0 + 0 = 0 1 + 0 = 1 1 + 1 = 10
Давайте рассмотрим использование этих правил на конкретном примере.
В десятичной системе исчисления все осуществляется достаточно просто: 65+42=107. Для сложения этих чисел в двоичной системе исчисления нужно сначала перевести их в эту систему, например, как показано на рисунке: Таким образом, получаем: 65 в 10-ой системе = 01000001 в 2-ой системе. Обратите внимание на то, что ведущий ноль в двоичном представлении числа добавлен для дополнения двоичного представления до восьми бит. Аналогично: 42 в 10 = 00101010 в 2. Выполним сложение этих чисел:
01000001 + 00101010 -------- 01101011
Можете перепроверить и убедиться, что 01101011 в 2=107 в 10:
0*27+1*26+1*25+0*24+1*23+0*22+1*21+1*20 = 64+32+8+2+1 = 107
Для выполнения операции вычитания последнее заменяется сложением, а в качестве второго слагаемого берется противоположное число. Например, пусть надо выполнить вычитание: 65 - 42. Заменим его сложением: 65 + (-42).
27 /16 = 1 с остатком 11 11 /16 = 0 c остатком 1
И того получим 1B.
Рассмотрим несколько простых примеров шестнадцатеричной арифметики. Следует помнить, что после шестнадцатеричного числа F следует шестнадцатеричное 10, что равно десятичному числу 16:
6+4=A 5+8=D F+1=10 F+F=1E 10+10=20 FF+1=100