Switch (коммутатор)

Сетевой коммутатор(свитч) (network switch, switching hub, bridging hub) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю, исключение составляет широковещательный трафик (на MAC -адрес-адрес FF:FF:FF:FF:FF:FF) всем узлам сети. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Принцип работы коммутатора. Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Коммутаторы бывают неуправляемые (unmanaged switch) и управляемые (managed switch).

  • Неуправляемые коммутаторы - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека. Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.
  • Управляемые коммутаторы - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора. Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI.

  • Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне (Что такое Ethernet)). Умеют анализировать получаемые кадры и работать с MAC -адрес-адресами устройств отправителей и получателей кадра. Такие коммутаторы не понимают IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов. IEEE 802.1p или приоритизация (Priority tags). IEEE 802.1q или виртуальные сети (Настройка VLAN Debian D-Link). IEEE 802.1d Spanning Tree Protocol (STP).
  • Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне. Умеет управлять сетевыми протоколами: IPv4, IPv6, IPX, IPSec — протокол защиты сетевого трафика на IP-уровне и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, Как работает PPPoE, vpn и т.д.
  • Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне. К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Когда нужно выбирать неуправляемый коммутатор? Если вам необходимо:

  • Просто раздать интернет на несколько устройств (5-8 штук);
  • Объем трафика, который будут потреблять подключаемые девайсы - небольшой;
  • Вам не нужна возможность дополнительных ручных настроек, как-то: фильтрация трафика, ограничение скорости на отдельных портах и т.д.

Как выбрать коммутатор по параметрам и функциям? Рассмотрим, что подразумевается под некоторыми из часто встречающихся обозначений в характеристиках.

Базовые параметры:

  • Количество портов. Их число варьируется от 5 до 48. При выборе коммутатора лучше предусмотреть запас для дальнейшего расширения сети.
  • Базовая скорость передачи данных. Чаще всего мы видим обозначение 10/100/1000 Мбит/сек - скорости, которые поддерживает каждый порт устройства. Т. е. выбранный коммутатор может работать со скоростью 10 Мбит/сек, 100 Мбит/сек или 1000 Мбит/сек. Достаточно много моделей, которые оснащены и гигабитными, и портами 10/100 Мб/сек. Большинство современных коммутаторов работают по стандарту IEEE 802.3 Nway, автоматически определяя скорость портов.
  • Пропускная способность и внутренняя пропускная способность. Первая величина, называемая еще коммутационной матрицей - это максимальный объем трафика, который может быть пропущен через коммутатор в единицу времени. Вычисляется очень просто: кол-во портов х скорость порта х 2 (дуплекс). К примеру, 8-портовый гигабитный коммутатор имеет пропускную способность в 16 Гбит/сек. Внутренняя пропускная способность обычно обозначается производителем и нужна только для сравнения с предыдущей величиной. Если заявленная внутренняя пропускная способность меньше максимальной - устройство будет плохо справляться с большими нагрузками, тормозить и зависать.
  • Автоматическое определение MDI/MDI-X. Это автоопределение и поддержка обоих стандартов, по которым была обжата витая пара, без необходимости ручного контроля соединений. Настоятельно рекомендуется обжимать по стандарту MDI EIA/TIA-568B, тем более если планируется использование РоЕ.
  • Слоты расширения. Возможность подключения дополнительных интерфейсов, например, оптических SFP.
  • Размер таблицы MAC-адресов. Для выбора коммутатора важно заранее просчитать необходимый вам размер таблицы, желательно с учетом будущего расширения сети. Если записей в таблице не будет хватать, коммутатор будет записывать новые поверх старых, и это будет тормозить передачу данных. MAC -адрес-адрес состоит из 48 бит.
  • Форм-фактор. Коммутаторы выпускаются в двух разновидностях корпуса: настольный/настенный вариант размещения и для стойки. В последнем случае принят стандартный размер устройства -19-дюймов. Специальные ушки для крепления в стойку могут быть съемными.

Функции для работы с трафиком:

  • Управление потоком (Flow Control, протокол IEEE 802.3x). Предусматривает согласование приема-отправки данных между отправляющим устройством и коммутатором при высоких нагрузках, во избежание потерь пакетов. Функция поддерживается почти каждым свитчом.
  • Jumbo Frame- увеличенные пакеты. Поддержка Jumbo Frame актуальна для гигабитных сетей (скорость от 1 Гбит/сек и выше) - прирост производительности в некоторых случаях достигает 300 процентов. Стоит помнить, что для использования этой технологии все устройства, между которыми необходимо взаимодействие, должны ее поддерживать. Jumbo Frame позволяет работать с пакетами большего размера, чем стандартный для сетей Ethernet. На обработку каждого пакета при приеме или передаче тратится определенное время. Если размер пакета станет больше, то для передачи блока данных понадобится меньше пакетов, и суммарное время, потраченное на обработку этих пакетов, тоже уменьшится. В результате при передаче больших объемов информации повышается общая производительность сети.
  • Режимы Full-duplex и Half-duplex. Практически все современные свитчи поддерживают автосогласование между полудуплексом и полным дуплексом (передача данных только в одну сторону, передача данных в обе стороны одновременно) во избежание проблем в сети.
  • Приоритезация трафика (стандарт IEEE 802.1p). Что такое QoS - устройство умеет определять более важные пакеты (например, VoIP) и отправлять их в первую очередь. Выбирая коммутатор для сети, где весомую часть трафика будет составлять аудио или видео, стоит обратить внимание на эту функцию.
  • Поддержка VLAN (стандарт IEEE 802.1q). Настройка VLAN Debian D-Link - удобное средство для разграничения отдельных участков: внутренней сети предприятия и сети общего пользования для клиентов, различных отделов и т.п.
  • Функция Traffic Segmentation (сегментация трафика) служит для разграничения доменов на канальном уровне. Она позволяет настраивать порты или группы портов коммутатора таким образом, чтобы они были полностью изолированы друг от друга, но в то же время имели доступ к разделяемым портам, используемым для подключения серверов или магистрали сети. Traffic Segmentation DES-3828.
  • Зеркалирование трафика (port mirroring). Для обеспечения безопасности внутри сети, контроля или проверки производительности сетевого оборудования, может использоваться зеркалирование (дублирование трафика). К примеру, вся поступающая информация отправляется на один порт для проверки или записи определенным ПО. Теория и практика SPAN/RSPAN
  • Защита от "петель" (Loopback Detection) - функции Spanning Tree Protocol и LBD. Особенно важны при выборе неуправляемых коммутаторов. В них обнаружить образовавшуюся петлю - закольцованный участок сети, причину многих глюков и зависаний - практически невозможно. LoopBack Detection автоматически блокирует порт, на котором произошло образование петли. Протокол STP (IEEE 802.1d) и его более совершенные потомки - IEEE 802.1w, IEEE 802.1s - действуют немного иначе, оптимизируя сеть под древовидную структуру. Изначально в структуре предусмотрены запасные, закольцованные ветви. По умолчанию они отключены, и коммутатор запускает их только тогда, когда происходит разрыв связи на какой-то основной линии.
  • Агрегирование каналов (link aggregation) (IEEE 802.3ad). Повышает пропускную способность канала, объединяя несколько физических портов в один логический. Максимальная пропускная способность по стандарту - 8 Гбит/сек.
  • Стекирование. Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек). При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.
  • IGMP Snooping. Имеет смысл включать если вещание IPTV. Разработан для предотвращения широковещательной (broadcast) ретрансляции multicast трафика компьютерам-потребителям, которые явно не заявили о своей заинтересованности в нём. Это позволяет коммутаторам исключать такой трафик из потоков, направляемых через порты, к которым не подключены его потребители, тем самым существенно снижая нагрузку на сеть. Однако при этом нагрузка на сам коммутатор не снижается, а повышается, поскольку такая фильтрация требует затрат памяти, NPU и CPU, в то время как простая ретрансляция по всем портам — операция "дешёвая".
  • Storm Control (Управление широковещательным/однонаправленным штормом). Широковещательный шторм (англ. broadcast storm) — передача большого количества широковещательных пакетов в сети, часто с последующим увеличением их количества. Может возникать, например, как следствие петель в сети на канальном уровне или из-за атак на сеть. Из-за широковещательного шторма нормальные данные в сети зачастую не могут передаваться. Избежать возникновения широковещательных пакетов в сети практически невозможно, так как они используются многими служебными протоколами. На коммутаторах без защиты от широковещательного шторма его легко вызвать, просто соединив два порта патчкордом между собой. А "однонаправленный шторм" это, например, различные атаки. Пример такой атаки это отправка большого количества ICMP протокол диагностики перегрузки сети- запросов на широковещательный адрес, с адресом отправителя в пакете, который указывает на "жертву" атаки. В результате все устройства в этом широковещательном сегменте начинают отвечать на ICMP-запрос на указанный адрес "жертвы". В обычной плоской сети (где только традиционные сервисы, не подразумевающие рассылок) реальный "флуд" диагностируется по показателю в 100 Kbs). Как работает? Storm control в каждую секунду измеряет количество бродкастов и, все что свыше, обрезает. Порт при этом продолжает работать для пересылки всего остального трафика.

Другие функции:

  • Диагностика кабеля. Многие коммутаторы определяют неисправность кабельного соединения, обычно при включении устройства, а также вид неисправности - обрыв жилы, короткое замыкание и т.п. Например, в D-Link предусмотрены специальные индикаторы на корпусе: в случае неполадки индикатор горит желтым, если кабель в рабочем состоянии - горит зеленым.
  • Защита от вирусного трафика (Safeguard Engine). Методика позволяет повысить стабильность работы и защитить центральный процессор от перегрузок "мусорным" трафиком вирусных программ. Что такое SafeGuard Engine и как настроить данную функцию на коммутаторах D-Link?
  • Энергосбережение. Ethernet 802.3az (Green Ethernet). Обращайте внимание на наличие функций энергосбережения. Некоторые производители, выпускают коммутаторы с регулировкой потребления электроэнергии. Например, умный свитч мониторит подключенные к нему устройства, и если в данный момент какое-то из них не работает, соответствующий порт переводится в "спящий режим". Суть Green Ethernet: сетевое устройство с поддержкой функции Green Ethernet периодически пингует свои порты (разъемы), и в случае если подключенное устройство не работает, то есть выключено или вообще не подключено, – порт отключается от питания. Помимо этого, специальное программное обеспечение определяет длину кабелей и в зависимости от их длины регулирует мощность сигнала. По заявлениям производителя, Green Ethernet позволяет сократить энергопотребление на величину от 45% до 80%.
  • Power over Ethernet (PoE, стандарт IEEE 802.af). Коммутатор с использованием этой технологии может питать подключенные к нему устройства по витой паре.

PQ VPS сервера в 38+ странах.

PQ VPS сервера в 38+ странах.

📌 Для тестирования скриптов, установщиков VPN, Python ботов рекомендуем использовать надежные VPS на короткий срок. Если вам нужна помощь с более сложными задачами, вы можете найти фрилансера, который поможет с настройкой. Узнайте больше о быстрой аренде VPS для экспериментов и о фриланс-бирже для настройки VPS, WordPress. 📌

💥 Подпишись в Телеграм 💥 и задай вопрос по сайтам и хостингам бесплатно!